
SCORE Milestone 1 Project Evaluation

Team Members:
Charlie Collins, ccollins2021@my.fit.edu
Michael Komar, mkomar2021@my.fit.edu
Logan Klaproth, lklaproth2021@my.fit.edu
Tommy Gingerelli, tgingerelli2021@my.fit.edu

Faculty advisor/client:
● Dr. Mohan - rmohan@fit.edu

Milestone 1 Progress

Task Completion Charlie Logan Michael Tommy To Do

Compare and
select
technical
tools

100% 25% 25% 25% 25% N/A

Select
collaboration
tools

100% 25% 25% 25% 25% N/A

Demos 100% 25% 25% 25% 25% N/A

Resolve
Technical
Challenges

80% 25% 15% 40% 20% Awaiting
further
conversatio
n with IT
over
TRACKS
CAS

Requirements 90% 30% 20% 20% 30% Need to
make
requiremen
ts on
containers

Design
Document

100% 20% 20% 20% 40% N/A

Test
Document

100% 50% 20% 15% 15% N/A

mailto:rmohan@fit.edu


Discussion of accomplished tasks:
Task 1 (Technical Tools): The technical tools that we needed to select were for server
implementation, file transfer, web development stack, and user authentication. For file transfer
we were deciding between Secure File Transfer Protocol (SFTP) and Secure Copy Protocol
(SCP), and ultimately decided on SFTP. While SCP is slightly faster, SFTP is more robust and
allows for file transfer into and from the client. The web development stack that we chose is
MongoDB, Express.js, React, Node.js (MERN). We felt this stack will provide us with the tools
to make a modern web application. For user authentication, we have reached out to IT regarding
access to the TRACKS API, but we have prepared for the possible use of Google authentication
in the event we can’t use TRACKS.

Task 2 (Select Collaboration Tools): For creating documentation, we have decided on using
Google docs as it allows for concurrent editing. For our version control, we have decided to use
GitHub. The editor we have chosen is Visual Studio Code as it is lightweight and allows all
processes that we need.

Task 3 (Demos): For file transfer, we made a small SFTP demo in python, in which we were able
to transfer a file from a local machine to a raspberry pi. Utilizing Tailscale VPN and a centralized
home server running an Ubuntu virtual machine under a ProxMox cluster we were able to
develop an environment that demonstrates the act of using ssh to access code01, which will
eventually be used to run the client. We were able to get a simple demo of React.js up and
running and an example database using MongoDB to display a MERN stack example.

Task 4 (Technical Challenges): For this milestone we had three main technical challenges. The
first challenge was using the Canvas API. To resolve this challenge, we read the api
documentation and consulted several other related sources. From this search we discovered that
Canvas implements GraphQL, providing a GUI for us to create our JSON requests, and found
the exact API endpoint to upload grades to Canvas. Using TRACKS CAS for the user
authentication will require further development in the ongoing conversation between our team
and the IT department to discern the feasibility of, or the benefits of using CAS over OAuth2.
Once this milestone has been completed the conversation will continue by sharing the Design,
Test, and Software Requirements documents with the IT department. Our decision to utilize
containerization has possibly brought a new technical challenge to add to the list, as properly
configuring this requirement will be difficult in production.

Task 5 (Requirements): Our requirement specification document outlines both functional and
interface requirements. The functional requirements specify exactly what functionality each
feature should provide. Included with our functional requirements are sample input and output
to describe the expected behavior of our application. The interface requirements define the
interface, through which the users will interact with the application.



Task 6 (Design Document): The design document for this project includes a UML diagram, an
ER diagram, as well as Mockups of the web app interface. The UML diagram describes the
classes as well as how they interact with each other. The Entity Relationship (ER) model
provides a diagram of how the database for the project will be set up. Finally the Mockups were
created as Google drawings and are a visual description of the interface.

Task 7 (Test Document): The test document that we created for this project details the test cases
to validate that each requirement has been met. The test cases describe a procedure to follow
within the application and end with the expected output from that procedure.

Discussion of member contribution:
Charlie: My contribution to this milestone was to first select the technical tool for file transfer. I
then created a simple file transfer demo that transferred a text document between my PC and my
raspberry pi. Then I worked on the Canvas API challenge, finding the endpoint that we need as
well as how to access the GraphQL for Canvas to assist in writing the JSON requests. For the
requirements document, I wrote the sections on assignment creation, assignment submission,
assignment deletion, and MOSS integration. I then created the mockups for the design
document, and finished the milestone by working on the testing document.

Michael: My primary contribution to this milestone was to begin solving the technical challenges
that we initially realized would halt progress. As of right now, the long-term storage for
submission files has not been decided upon. User authentication is currently an ongoing
conversation between the IT and Security department, Dr. Mohan, and our team in order to
consider the cost and benefits of using CAS over the Oauth2 protocol. Other contributions that I
made towards this milestone includes setting up the environment for developing the server and
client applications on a centralized server hosted from my home and accessed through Tailscale
VPN. This interaction between remote PC and the server is considered a demo for the purposes
of documentation. In terms of the design document, my main contribution was the Entity
Relationship diagram, and for the requirements document I outlined the specifics of the
client-server connection and the functional and interface requirements associated.

Tommy: My biggest contribution to this milestone was creating the UML diagram. This
included defining the classes and relationships between them. I also created the hello world
demos for user authentication and containerization. As we progressed through this milestone,
containerization became an increasingly important concern for us, so I also created a technical
demo of containerization. Finally, I wrote a portion of the requirements including auto grading,
immediate feedback, grading portal, and user authentication.



Logan: My primary contribution to this milestone involved re-familiarizing myself with the tools
and software needed to develop a MERN stack website. I collaborated with the other members
on discussions involving the layout of the website interface and how we would maintain the
integrity of the server and safeguard against malicious code being submitted. I spent time coding
in React.js and MongoDB to not only create a demo of the full stack working but also to prepare
for the full stack website that the user will interact with.
Task Matrix for Milestone 2

Task Charlie Logan Michael Tommy

Implement the
Shell
Application

20% 15% 50% 15%

Implement
Assignment
Creation

15% 35% 15% 35%

Implement
Assignment
Submission

40% 20% 20% 20%

Discussion of Milestone 2 Tasks
Task 1: Our first task of milestone 2 is to implement the shell application. We need a user
interface to start implementing the other features on top of, and we felt the shell application
would be the easier of the two interfaces to create first.

Task 2: Our second task of milestone 2 is to implement the assignment creation feature. Once
we have completed the first task, assignment creation is the logical next step. For this milestone,
assignment creation will include creating a new assignment and giving it a name, description,
due date, and number of attempts. Test cases and auto testing configuration will be implemented
in the next milestone.

Task 3: Our third and final task for this milestone is to implement the assignment submission
feature. Once we have assignment creation implemented, this was the next logical feature to
implement. For this milestone, assignment submission will include uploading a file into the
application, receiving confirmation that the assignment has been submitted, and being able to
view the submitted file. This will happen locally, however, as file transfer will not be
implemented until the next milestone.

Dates of meetings with the client/advisor:
9/17/2024 at 11 am



9/24/2024 at 11 am

Client/Advisor feedback
Task 1 (Technical Tools): “The tools that you all have selected seem reasonable. However, I
would ask that you document why those tools were selected. For example, include pros and cons
to the alternatives, and why the advantages outweigh the disadvantages in this instance.”

Task 2 (Select Collaboration Tools): No feedback needed

Task 3 (Demos): “The demos look good, they demonstrate that you can use the tools.”

Task 4 (Technical Challenges): “The resolution of your challenges look good.”

Task 5 (Requirements):
Auto testing: Auto testing should also be able to use a professor submitted verifier for the
solution of an assignment. Not every assignment will give an output that can just be checked
using diff. Some assignments, like Towers of Hanoi, for example, could have multiple solutions,
so the professor might instead want to upload code that can verify if the solution is correct or not.
Test cases: Consider implementing weighted test cases. Some test cases might be harder to
account for, or cover more of the requirements, so each test case should have an adjustable
weight. Visually, the students will see the test case as either passed failed, the numeric score
would be affected by the weight.
MOSS: Professors should be allowed to submit files to the MOSS algorithm. This might be to
include starter code given to the student that should be ignored, or include certain answers from
the internet to check against. Additionally, you should consider adding some sort of
visualization to the MOSS report. Since this would essentially be a graph of pairwise
similarities, it might be difficult to read, so a graphical representation could be helpful. Finally,
see if you could add clustering of pairwise similarities to detect if groups of students worked
together on an assignment.
Shell Client Interface:Make PDF files be a link that can be opened in a browser or PDF viewer.

Task 6 (Design Document):
Mockups:Make the visualization of detected similarities be more obvious. Perhaps change the
entire row of the flagged submission to be red instead of just the name of the student.

Task 7 (Test Document): No feedback given.

Faculty Advisor Signature: _______________________________ Date: ________



Evaluation by Faculty Advisor

● Faculty Advisor: detach and return this page to Dr. Chan (HC 209) or email the
scores to pkc@cs.fit.edu

● Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or
write down a real number between 0 and 10)

Charlie
Collins

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

Tommy
Gingerelli

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

Michael
Komar

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10

Logan
Klaproth

0 1 2 3 4 5 5.5 6 6.6 7 7.5 8 8.5 9 9.5 10


